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Single-particle excitations in the normal state of the 
negative-U Hubbard model 

S V Travent 
Deparurrent of Physics, University of Wanvick, Coventry CV4 TAL, UK 

Received 17 January 1994. in final form 28 March 1994 

Abstract. 0ne.partide properties of the normal state of a negative-U Hubbard model are 
analysed within the framework of the incoherent local-pair (ILP) approach. In the self-consistent 
Hattree-Fock approximation an analytic expression for the critical value Uc < 0 of the 
coupling smngih is obtained below which the system becomes unstable towards the formation 
of incoherent local pairs. The single-particle excitation spectrum for different regimes of the 
attraction strength U and particle concentration n is investigated. and the U-n phase diagram is 
discussed. 

1. Introduction 

Local pairing of fermions, mostly as an alternative model of superconductivity, has been 
known for decades since the pre-BCS theory suggestion of Schafroth and co-workers [I]. 
One of the principal features of such a theory is the existence of bound pairs of fermions 
above the superconducting transition temperature T,. Studies of the ground-state properties 
and low-lying excitations of local-pair superconductors in the limit of strong attraction 
between fermions have been carried out by several authors. Thus, Leggett 121, Nozikres 
and Schmitt-Rink [3] and Micnas and co-workers [4] found that for temperatures above 
the Bose condensation temperature T, and below the pair-breaking temperature Tp the 
system behaves as a hard-core Bose gas on a lattice with a charge 2.5. The relevance 
of such a ‘local-pair’ superconducting mechanism to superconductivity in real compounds, 
including high-temperature metal-oxide superconductors, has also been studied in depth 
with respect to the specific nature of the attraction between fermions. Thus, Alexandrov 
and co-workers [5,6] proposed a bipolaron theory of superconductivity with an attaction 
between electrons arising from a strong electron-phonon interaction. Mott [7] also suggested 
a bipolaron model of superconductivity in which the effective electron-electron attraction 
is induced by the exchange of magnons. The simplest form of the model Hamiltonian for 
such theories is that suggested by Hubbard [SI: 

where we assume an attractive interaction between electrons (U < 0). In (1) t;j denotes the 
fermion hopping integral and p is the chemical potential. A negative U in (1) obviously 
favours double occupancy of sites, thus leading to local-pairing effects. A version of this 
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Hamiltonian was used to describe a static binding effect at localized centres in amorphous 
semiconductors [9, IO] and charge-ordering phenomena [l I ,  121. The model was also 
considered by several authors in connection with superconductivity [4]. 

So far, the major interest in studying the Hamiltonian in (1) has been concerned with its 
ground-state properties and low-lying excitations. In the weak-coupling Limit the problem 
is that of a BCS-type theory, where the HartreeFock mean-field approach works well at 
temperatures well below some degeneracy temperature which is of the order of the Fermi 
energy. In the opposite limit of strong attraction the problem is reduced to that of an 
effective pseudo-spin Hamiltonian 

$8 = 

with an effective ‘exchange interaction’ Jij = 4f$/lUl, external ‘magnetic field’ B = 
p + lUl/2, and magnetization fixed by the equation for the chemical potential: 

where n is the number of electrons per lattice site. Then the mean-field approach can be 
used [4], provided one considers the system below the Bosecondensation temperature of 
effective ‘bosons’: 

where f denotes the hopping integral in (I) .  In both limits a fairly complete analysis of 
the ground-state properties and the low-energy excitations has been given [4], including an 
interpolation between two regimes [3, 131. 

For the normal state an interpolation procedure was suggested recently by Gyorffy and 
co-workers [I41 on the basis of the hypothesis that the thermal disorder of the normal state 
in the presence of local pairs can be described with the help of a local-pairing amplitude 

Here 0i may be interpreted as a fluctuating ‘phase’ of the local-pair wavefunction on the site 
i. In contrast to the BCS approach for low temperatures, where all the phases 0, are coherent 
(which reflects the fact that the pairs are overlapping, thus forming a Bose condensate) in 
the ILP state the phases 0, are entirely incoherent, fluctuating randomly, so we do not have 
pairs with definite momenta but a definite number of such pairs on a site. As was shown 
in [14], the superconducting transition in this approach may be described as a disorder-order 
transition. The study of such a bansition in the ILP state for various coupling strengths U 
revealed a nice interpolation for Tc between the weak-coupling (BCS) and strong-coupling 
(Bose-condensate) limits, suggesting that the LP may be thought of as of a good interpolation 
scheme for the description of the normal state of the system. Application of the ILP model to 
the calculation of such observable effects as gaps in the density of states and their detection 
in photoemission and tunneling measurements was discussed by Park and Joynt [15]. 

The purpose of the present paper is to analyse the one-particle excitation spectrum of 
the ILP state for various values of the coupling strength U and particle concentration n. 
The rest of the paper is organized as follows. In section 2 we derive general equations 
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for a single-particle Green function of the ILP state in the coherent potential approximation 
(CPA), using a singlesite static method, employed for the model by the authors of [14]. 
In section 3 we investigate an instability of a system of fermions, interacting via a model 
potential in (I), towards the ILP state formation in a dilute limit and obtain the critical value 
for the effective amaction between fermions in our model Hamiltonian, (1), at which the 
instability may occur. The general solution of the UP equations for the oneelectron coherent 
potential C(z) is given in section 4. We analyse our UP equations for various values of the 
pairing potential A and chemical potential p and discuss three different regimes: (i) small 
pairing potential A, when the single-particle excitation spectrum contains no local gap; (ii) 
the one-particle excitation spectrum has a gap, corresponding to the binding of electrons 
into local pairs, although with only a finite fraction of electrons forming local pairs; (iii) 
the strong-coupling (atomic) regime, in which all the fermions in the system are bound into 
the local pairs. We analyse the single-particle excitation spectrum for all of these different 
regimes of U and n, and calculate the ILP state U-n phase diagram in the zero-temperature 
limit. Conclusions then follow in section 5. 

2 Single-particle Green function of the ILP state in the coherent potential 
approximation 

To obtain information on the singleparticle excitation spectrum of our system, described 
by the Hamiltonian in (1) in the presence of the local-pairing amplitude in (4) we use the 
method of random fields, applied to the problem at hand by Gyorffy and co-workers 1141. 
We shall work with the Nambu-style matrix Green function 1161: 

The matrix elements of this Green function are 

Here (. . . ; . . .) denotes Wick's time-ordering followed by averaging in a thermal ensemble. 
As usual, we expand the Green function in (5) into a Fourier series. The sum over the 
Matsubara fermion frequencies is 

In the method of random fields [ 141 we have the following equation for the Green function 
of an electron in a random potential: 

where ni and Ai are the independent random variables. 

which is a complex number: 

Ai = [Aileiea. 

The qualitatively different feature of the theory is the fluctuating pairing potential Ai, 
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We assume in the following that only the 0; phase fluctuates and will accept for the other 
independent variable ni. its Hartree-Fock values: nib Ti,, so that the only role of the 
corresponding terms in (7) will be the renormalization of the chemical potential j ~ :  

p = i i + ; u .  (8) 

Here and in the following the absence of spin fluctuations is assumed. We shall also 
drop the 'tilde' in (8) until we pay particular attention to the Hartree-Fock correction. 
Equation (7) is a generalization of the corresponding Gor'kov equations 117,181 for a 
particular configuration of n;, and A(. One should mention that such combinations of the 
Gor'kov equations and the method of random fields have been discussed previously by 
several authors with the application to the theory of superconducting alloys [19]. However, 
in contrast with the problem of superconductivity in transition-metal alloys, where the 
external disorder makes it sensible to consider fluctuations of magnitude of both n; and Ai, 
the present model, which deals with the normal state of the system in the absence of the 
external disorder, takes into account only the thermal disorder resulting in fluctuations of 
phases 0;. 

One can now rewrite (7) in the ordinary form for a Dyson equation: 

- G=&+&,vC (9) 

where the mahix of the random potential is 

The central feature of the CPA method is the approximation for the ensemble averaged Green 
function: 

i; 4 l a  (11) 

by E', which describes the Green function for the CPA effective medium. We will not 
discuss here the CPA method itself, so that the reader should refer to [I41 and to the review 
by Elliott and co-workers 1201 for the details. Here we only briefly note that the average 
Green function 9 in (11) describes the motion of an electron on a non-random effective 
lattice. The corresponding Dyson equation for our effective medium Green function has 
the following matrix form: 

- Gc=&+&EGc.  (12) 

Here Z'(m,J is the frequency-dependent complex coherent potential at site i. In the 
following we shall consider only the homogeneous limit, so that we will assume that the 
coherent potential is independent of the lattice site: Z ( m J  ~(OJ.). If we now consider 
an 'impurity' in this effective lattice at site i, described by the potential in (IO), it is easy to 
show with the help of the Dyson equations, (9) and (12), that the corresponding 'impurity' 
Green function takes the form 

(13) 

/dei P(8;)@(i , i ;mn)  = c ( i , i ; m n ) .  (14) 

G ~ ( t , i , m n )  e . .. = { l -Gc(i , i :mn)w.  - ~ ( m n ) ] ] - ' ~ ( i . i ; m n ) .  

Then, according to the CPA, we must proceed with the averaging procedure in (1 1): 
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Here we will take for the 'probability distribution' P(@) that of randomly disordered 
incoherent local pairs and assume in the homogeneous limit [ 141 

(15) A - Ae'6 
I -  

I 
p(e i )  = -. (16) 2T 

With such a P(@) the CPA condition in (11) for the impurity Green function of (13) is 

can be obtained from its Dyson equation, (12): 

Here &k = &: - p, and denotes the 'bare' band energy In the state with A; and P(6i) 
described by (15) and (16). the off-diagonal elements of the matrices G' and vanish 
because of local gauge invariance. Moreover, in the absence of magnetism the one-particle 
Green function must be independent of the spin projection: G,, = G-o-,,. For the matrix 
elements of ow Nambu-style Green function Gc and those of the coherent potential E this 
implies 

G&(i, i ;  w,,) = - GF,(i, i; -on) X&J,) = - X1,(-mn).  

Using the notation 

G(oJ = G i , ( i , i ;  ma) X(o.) E Xl,(w,) 

we arrive at the following equation for the 'impurity' Green function in (13): 

~ " ( i ,  i: 0,) = - { I 1 G(on)I 1 + G ( - d  X ( - d  1 G(wn) G(-wn) 
G(o.) G(-o,) Ae-'" - G ( - 4  11 + G(w.1 C ( 4 l  DET - 

(20) 

where 

DET = -[1+ G(w,) C(o,)] [ 1 + G(-w,) X(-o,)] - A2G(~,)C(-~,) .  
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Now the basic CPA equation, derived from (17), takes the following form: 

To determine the pairing potential A and the chemical potential p we must impose the 
self-consistency conditions, which follow from the definition of the Green function in (6): 

Here 6 is a positive infinitesimal. Using (20) for the impurity Green function and (21) for 
the CPA Green function we have, instead of (22) and (23): 

To complete the system of equations we must now provide a recipe for the calculation of 
the CPA Green function in (19). Making an analytic continuation for the Fourier coefficients 
- G(wJ and E(wn)  from the complex points on into the complex z-plane with the cut along 
the real z-axis, we have for the CPA Green function in the complex z-plane: 

Following [14], we shall employ a model density of states po =constant, given by 

po(&) = - x 
2 I '  0 otherwise. 

Here, and in the subsequent analysis, we will measure all energies in the units of half 
bandwidth, i.e. W/2. Then the calculation of the integral in (26) is trivial and for the 
analytic continuation of the Green function G ( z )  we have 

It is assumed in (28) that above and below the real axis the appropriate branch of the 
complex logarithm function is taken (both X(z) and G ( z )  must have negative imaginary 
parts in the upper half-plane of the complex variable z ,  and positive parts below the real 
axis): 

1 
2 

coth-'(x & iy)  z -coth-' 
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Now our fundamental CPA equation, (21), is reduced to the equation on the coherent potential 
C(z): 

coth-'[z - C(z) + p] = - 
A'+ E(z) C(-Z)' 

Since the essential physics, as far as the single-particle excitations is concerned, is contained 
in the frequency-dependent self-energy C(o) which is a discontinuity of C(z) across the 
cut 

C(o)=i[C(o+iO)-  C(o-iO)] 

our purpose will be the calculation of C(z) just near the real axis, i.e. for z = w f i o  

C (UJ f io) = Re [C(w)l i 2 r(o) > o  (31) 

and, using (29), we have, instead of (30), a system of four coupled equations for Re [ X(rtw)], 
r(4m). For the given density n and the attraction strength U the self-consistent solutions 
for A and p are then determined from the following equations (where the sums over the 
Matsubara frequencies have been converted into contour integrals): 

with a suitably chosen contour r,. Since, as we shall see in the next section, the integrands 
do not have poles in the complex z-plane, except those of the function 

the contour ro in the integrals of (32) and (33) runs over the cnt branches along the real 
z-axis, where both G(z )  and X(z) have a discontinuity across the cut. Thus we obtain 
the single-particle excitation spectrum described by C(o) for some particular interaction 
strength and particle concentration. We shall realize this programme in section 4. 

3. Analytic analysis of the ILP instability 

Before discussing the properties of the general solution for the one-electron coherent 
potential we investigate our equation for Z(z) in (30) in the limiting cases of small and 
large values of the pairing potential A, where the equations can be handled analytically, 
and where a physical interpretation at low densities is straightforward. 
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3.1. Threshold for the ILP imtabilig 

To discover conditions under which the instability towards incoherent local-pair formation 
occurs in systems of fermions with the model interaction between the particles given by the 
Hamiltonian in (I), we consider the limit A + 0, when one can expect that the properties 
of OUT system are those of a normal metal with a small concentration of 'impurities': 
thermally disordered local pairs. The effect produced by this weak disorder may be taken 
into account using a standard perturbation theory method [21]. To second order in the 
'perturbation' potential A the self-energy correction due to the interaction with these charge 
fluctuations is given by 

zo(z) N - A*G&z). (34) 

This corresponds to the single-site self-energy diagram in the 'non-crossing' approximation. 
To obtain the 'pair-breaking' temperature T, (which is different, of course, from the 
superconducting temperature Tc), i.e. the temperature at which a non-trivial solution for 
A appears, one should substitute E&), (34). into the equation for the pairing potential in 
(32). In the limit A + 0 the corresponding equation for the transition temperature T, is 
then 

1 + Go(w,) Go(-@.) = 0 6 "  (35) 

where pp 
converting it into the contour integral as in (32). we obtain the following equation for T,: 

l / T p .  If we now proceed with the calculation of the Matsubara sum in (35) by 

where the Green function of the ideal Fermi-system with our model density of states, given 
by (27). has the form 

Besides the LP transition temperature, (36) also contains some useful information about 
the critical value of the attractive potential U at which the instability may occur. Indeed, 
performing the integration in (36) in the limit Tp -+ 0, we obtain for the critical interaction 
strength 

1 
In 2 

U 
E -  

so that U, N -1.44. Note that for the case of two fermions such attraction would correspond 
to a bound state with a radius of about an interatomic distance. Such a strong interaction 
will obviously lead to a breakdown of the Fermi-liquid-like picture for the system. To 
demonshate this let us now assume the situation when a weak instability (A << 1) has 
developed for the interaction strength just below U, and analyse what effect it has on the 
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oneelectron spectrum. In the dilute. limit when EF N 1 ffi N n << 1, where n is the fermion 
concentration, we can estimate the low-temperature oneelectron retarded self-energy near 
the Fermi-surface from (37) as 

In ( E )  - i zAz .  
A2 

XO(0) N - - 
2 2  (39) 

The self-energy correction Re [ B,(O)] to the bare band energy is positive because of the Pauli 
exclusion principle. Indeed, since some fraction of the lattice sites are doubly occupied, 
the average electron energy should increase. For the relaxation rate due to scattering by 
thermally disordered local pairs we have from the imaginary part of (39): 

We should emphasize at this point that the non-zero imaginary part of B does not imply a 
‘breakdown’ of the Fermi-liquid theory, since the ILP state is essentially a finite-temperature 
approach, dealing with temperatures above the superconducting transition temperature Z. 

The further increase of the interaction strength (and, correspondingly, A) will lead to 
a more dramatic change of the spectrum. Indeed, at some critical A the real part of our 
self-energy, (39) becomes of the order of the Fermi-energy: 

and the one-electron spectrum displays instability towards a gap formation at w = 0, as will 
be shown in section 4. 

3.2. ILP state in the strong-coupling (atomic) limit 

Another limit of the model where OUT equations have analytic solutions is that of a large 
coupling strength U. for which we could expect a situation in which all the fermions 
are bound into the local pairs. In this regime the one-particle spectrum must have a 
gap, separating two ‘Hubbard’ subbands (the lower one corresponding to the electron 
states participating in the pairs formation, and the upper one describing the electron-hole 
excitations), each with a half-width of the order of unity, as that of the bare electron band. 
If one neglects such an ‘infinitesimal’ on the scale of characteristic energies, which are of 
the order of the coupling strength U, our Green function in (28) can be expanded for the 
large values of the argument: 

1 
coth-’[z - X(Z) + PI - 

Then, using our basic equation for the coherent potential (30). we get the following solution 
for X(z) and the Green function C(z): 
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with zo = which has the obvious meaning of half the binding energy of a local 
pair. With Z(z) and C(z) in (43) and (44) the integration in (32) and (33) is trivial, so that 
we mive at the following results for the pairing amplitude A and the chemical potential p: 

The ‘boson’ chemical potential, which is twice that of the fermion value, does not depend on 
temperature. This fact is well understood, since there is no entropy associated with motion 
of the bosons, as they are entirely incoherent. Moreover, the ‘true’ chemical potential 
must take into account the Hartree-Fock term (8), so that of the bosons equals -U .  The 
temperature dependence of the pairing potential A which follows from (45) is due to the 
eleciron-hole pairs’ excitations. For low temperatures, we have for the pairing amplitude 
A and the oneelectron ‘binding’ energy zo 

so that the energy needed to destroy a pair is 20 = IUI. Clearly, since the effective boson 
annihilation and creation operators are given by the expressions bi = citcil and b! C / ~ C : ~ ,  
respectively, it  follows from (22) that the average number of bosons is equal to 

For a small enough density of fermions we thus have from (47) for the average number of 
bosons half of that the fermions, i.e. all existing fermions are bound into the pairs. 

The poles of the Green function (44) correspond to the centres of two ‘Hubbard’ 
subbands, where oneparticle excitations are situated. As mentioned above the lower band 
must correspond to hound electrons. Indeed, for the self-energy in the lower band we have 

Z(2 = -20) = -IUl(l - ;) 
so it is determined by the attractive potential of another electron with a positive correction 
due to the Pauli exclusion principle. For an electron in the upper band only the last term 
survives: 

n 
Z(2 = 20) = IUIS. 

The pole of the self-energy, (43), seems to be an intrinsic feature of the strong-coupling 
regime. Generally speaking, the existence of a pole in Z(z), where the oneelectron 
Green function vanishes, is normally associated with superconductivity [IS]. In the present 
approach, in which we do not consider long-range order, we interpret this state as the 
extreme Bose limit, when all the existing electrom are bound into incoherent local pairs. 
Note, that our approximation for the strong-coupling regime which leads to the expansion 
of the Green function, (42). is valid until the pole of Z(z) in (43) is positioned far away 
from the top of the lower ‘Hubbard’ subband, i.e. 11.~1 < zo - 1. This means that the pairing 
potential should be sufliciently large: A’ > 211.~1. 
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4. General solution for the single-particle self-energy 

In this section we discuss solutions of our fundamental equation for the one-electron coherent 
potential Z(z), (30). for arbitrary A and p. As was clearly demonstrated in the previous 
section, the corresponding solution for C must display different behaviour for different 
regimes of the coupling strength. Our purpose now is to study how and where (for which 
A and p )  the crossover occurs and what are the spectral properties of the corresponding 
one-particle Green functions. 

1 0  I 

Chemical potential p 

Figure 1. The ILP state Az-p phase 
diagram. The full curve displays the 
critical values of A’ at which the 
UP state one-panicle specmm becomes 
unstable towards gap formation. For 
values of A%) above the broken curye 
the one-particle selknergy contains a 
pole. located between two ‘Hubbard‘ 
SubbandS. 

We have solved our basic equation, (30). for different values of A and p, having reduced 
the equation for Z(z) near the real axis z = w * io to a system of four differential equations 
for four real functions. The latter was solved numerically using the standard methods. 
Mathematical details of the corresponding solution are described in appendix A, and here 
we will discuss only the results. Spectral properties of the system are analysed in terms of 
the quasi-particle density of states (DOS) which is given by the following equation: 

(50) 

As follows from the analysis given in appendix A, for small values of the pairing potential 
A (those lying under the full curve of figure 1) the one-particle excitation spectrum contains 
only one band with a non-zero density of states at w = 0. An example of such a single-band 
spectrum is plotted in figure 2 for the following parameters: A* = 0.05 and p = -0.7. 
This range of A may be thought of as a limit with the small concen&ation of local pairs, so 
that one may expect that the properties of the system are close to those of a normal metal 
with some effective disorder produced by the existing local pairs. Indeed, figure 2 illustrates 
that the corresponding solution for Z(o) closely resembles the form given by (34). The 
real part of the oneelectron self-energy at w = 0 is positive, indicating the influence of the 
Pauli exclusion principle on an electron moving in a system with charge fluctuations: the 
incoherent local pairs. Note that the quasi-particle density of states for this set of parameters 
which is plotted in figure 5(a) contains no gap at OJ = 0. 

The one-electron spectrum has a single-band character only for A2(p)  lying below the 

1 
p(w)  = --Im[G(w+iO)]. 

H 

full curve shown in figure 1. For lpl * 1 this curve, as shown in appendix A, has the 
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in Ihe weak-eoupiing repime. Real (full 
CUNe) and imaginary (broken curve) 

1 

w 
P $j 0.0 

$j -0.1 

a 

A' = 0.05 
p = -0.7 

0 -0.2 

following asymptotic behaviour: 

Figure The one-& 

which corresponds to small concentrations of either electrons or holes. At densities near 
half-filling, the curve Ai@) approaches the critical value 

1 
3 

Ai(@ -+ 0) = -. 

Note that (51). which corresponds to the dilute regime, is equivalent to that discussed 
in section 3, i.e. (41). For A ( p )  2 A&) the one-electron spectrum is split into two 
subbands, so that to add an electron to the system one needs an energy larger than p.  As an 
illustration of the two-band single-particle spectrum we plot in figure 3 the corresponding 
solutions for C(w) for A' = 0.3 and p = -0.8 (p(o) for this set of parameters is plotted 
in figure 5(b)). An interesting feature of C(w) in this range of parameters is that part of the 
occupied electron states (i.e. those lying below o = 0) have positive self-energy (the real 
part of the complex potential is positive: Re C(w)  > 0). One can interpret these electron 
states as those corresponding to the electrons not bound to the local incoherent pairs but 
strongly affected by the interaction with pair fluctuations. Such a type of solution for C(o) 
corresponds to the values A'@) which lie above the full curve but below, the broken curve 
shown in figure 1. The corresponding set of equations which provide the solution for A&L) 
is given by (A18)-(A20). 

If we now move to higher values of A, which lie above the broken curve A:(p) in 
figure 1, we will have to deal with the strong-coupling limit. As an example of such a 
regime we plot in figure 4 the solution of our basic equation for C(w) (with the density 
of states p(o)  given by figure 5(c)) for A* = 1 and /I = -0.7. The main feature of 
the corresponding solution for C(o) in this range of parameters is the existence of a 
pole between two 'Hubbard' subbands at a frequency given by a solution of (A17) 
in appendu A. The presence of that pole leads to a positive Re [E] in the upper band and 
to a negative Re [C] in the lower one. This implies an effective attractive potential for all 
electrons in the occupied electron states, thus making one think of all the electrons in the 
system as bound into incoherent local pairs. We associate this ILP state with the extreme 
Bose limit. 
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4- 

A’ = 0.3 
p = -0.8 

Figure 3. The one-particle self-energy 
in the intermediateaupling regime. 
Real (full curve) and imaginary (bm- 
ken curve) pans of he coherent potential 
E@ +io) as functions of frequency for 
A’ = 0.3 and U = -0.8, 

-2  
-3 -2  - 1  0 1 2 3 

Frequency w 

Figure 4. The one-particle self-energy 
in the strong-coupling regime. Real (full 
curve) and imaginvy (broken curve) 
parts of lhe coherent potential Z(a+iO) 
as functions of frequency for A2 = 1.0 

-6 and U = -0.7. Note that a pole of 
-3 -2 -1  0 1 2 3 Re[Xl appears for these values of A2 

i_j ., , \ I ,  ; = 1 . 0 ,  1 
p = -0.7 

-4  
3 

Ftequency w and U. 

Since we have now obtained the numerical solution for Z (o iz io), we can evaluate the 
integrals (32) and (33) to obtain the ‘phase separating’ curves on the U-n plane, which 
would correspond to those of Ai(@) (full curve) and A:(@) (broken curve) in figure I. 
Indeed, the contour integration in (32) and (33) is now reduced to that along the real z axis: 

(53) 
B(o + iO)E(-w - io) +m ’1 r o  ImAz+X(w+i0)Z(-o- iO) 

(54) 
C(-o - io) d o  n 1. [+m Im 

IZ -m Az + B(o+ iO)Z(-o - io) -= 5’ (54) 
C(-o - io) d o  n 1. [+m Im 

IZ -m Az + B(o+ iO)Z(-o - io) -= 5’ 
We calculated the corresponding phase diagram in zero-temperature limit using U and n 

evaluated from the integrals in (53) and (54). Figure 6 displays the results of this calculation 
with the full curve corresponding to the transition from the singleband case to the two-band 
case (full curve A&) in figure 1) and the broken curve being the result, related to the 
curve A,(@) in figure 1 (broken curve). 

We have also evaluated the da t ive  fraction of local pairs from (49). The result for IOW 
densities is shown in figure 7. It clearly displays the features of the ‘weak-’ and strong- 
coupling regimes discussed above. Indeed, as can be seen from figure 7, only a small part 
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4 
d I 

frequency w Fermion densitv n 
Figure 5. One-pyticle density of states for different 
values of A and p. (a) Wak‘-coupling regime: 
A2 = 0.05 and p = -0.7. (b) Intermediate-coupling 
rrgime: A2 = 0.3 and p = -0.8. (c )  Strong-coupling 
rrgime: A2 = 1.0 and p = -0.7, 

Figure 6. The LLP state U-n phase diagram. Thc 
full curye displays the transition into the ‘two-band‘ 
regime with a gap in the one-particle density of swtes. 
The broken curve indicates a c~ossover between the 
intermediate- and swng-coupling (‘Base-gas’) limits. 

of fermions form incoherent local pairs as the coupling strength exceeds some critical value 
U&) (full curve in figure 6). The broken curve in figure 7 shows the ‘boson’ fraction as 
calculated along the other critical curve Ul(n) (the broken curve in figure 6). It is clearly 
seen from that result that, for attractions stronger than Ul(n),  the system is in the extreme 
Base limit, so that the effective number of ‘bosons’ is just half of that of fermions: 

Fermion density n 

Figure 7. Relative fraction of ‘bosons’ at low 
concenvations. The two c w e s  show ‘boson’ density, 
(49). relative to half the total fermion concentnrion, 
calculaied along lhe ‘phase-separation’ CUNOS shown 
in figures I and 5 .  The full curve displays the fraction 
of ‘bosons’, calculated for the values of A2 and p at 
which a gap appears in the excitation specfrum. The 
broken curve corresponds to thy in figure 6. 
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This analysis of the phase diagrams is, of course, only of qualitative significance, since 
we calculated the corresponding quantities at T = 0, and the ILP state is essentially the 
high-temperature (T >> T.) phase. However, the reasonable results we get, for example 
for the effective ‘boson’ density in the strong-coupling limit, imply that the method, at 
least in the mean-field approach, correctly takes into account the existence of the bound 
states. The further verification of the ILP phase could probably be obtained by a study of 
the transport properties of the system since, as was mentioned in the introduction, one of 
the main features of the local-pair theory is the existence of charge carriers with charge 2e 
in the normal state. 

5. Conclusion 

We have studied single-particle excitations in the incoherent local-pair (ILP) state of the 
negative-U Hubbard model I141 for various regimes of the coupling strength U and particle 
concentration n. It was shown that with the attraction between electrons exceeding some 
critical value, U, = -l/In2, the system of fermions described by the Hamiltonian (1) 
becomes unstable towards formation of the incoherent local pairsthemally disordered 
pairs of fermions. This approach is valid in the temperature range 

Tc << T << Tp 

(where Tc is the Bose-condensation temperature, and Tp is the pair-breaking temperature). 
Within the framework of the ILP model [14], and using the formalism of the coherent 

potential approximation (CPA), we have solved the equation for the one-electron coherent 
potential in a thermally disordered crystal for arbitrary values of the pairing amplitude A 
and the chemical potential p. 

We have demonstrated for the limit of a small concentration of local pairs (IVl - 
that in this case the properties of the ILP state are similar to those of a normal metal, although 
Z(w)  has a non-zero imaginary part at o = 0. In the strong-coupling regime ([VI >> /U,]) 
we have shown that the system displays the properties of a Bose liquid with all the existing 
fermions bound into the local pairs. In the intermediate regime the system may be considered 
as an ionization equilibrium of local pairs and strongly correlated electrons. 

We have investigated spectral properties of the one-electron Green function using the 
general solution of the CPA equation for the complex coherent potential Z(z) and obtained 
single-particle excitation spectra for various regimes of the coupling strength and particle 
concentration. Results of the general solution are consistent with both the weak- and strong- 
coupling regimes. 

We have also evaluated the ILP state U-n phase diagram which displays the presence 
of three different regimes of the system’s behaviour: the ‘weak’-coupling regime with 
properties similar to those of an impure normal metal; the strong-coupling extreme Bose 
limit; and the intermediate regime, which is a ‘mixture’ of incoherent local-pair states and 
highly-correlated one-electron states. 
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Appendix A. Solution of the CPA equation on Z(z) 

To investigate (30) let us consider two functions of the complex variable z just above the 
real axis: 

Re (z) > 0 
i l E z )  Re(z) c 0. 

C(Z) = 

According to the analytic properties of Z(z) we have for z = w + io 

XI SI - iyl 

ZZ SZ + iyz 

with non-negative YI and M. Using (29), we can then rewrite our general equation on X(z), 
equation (30), in the form of four equations for SI, SZ, YI and yz: 

In the case of half-filling, i.e. when /L = 0, it is easy to show that the solution X(z) of 
(30) is antisymmetric: 

C(-z) = -Z(z). (As) 

Provided we have such additional symmetry in our equations, leading to that of functions 
(A2) and (A3): 

Sl(0) -S,(w) = S(0) (A91 

Yl (0) = M ( 0 )  = Y (0) (A 10) 

our system, equations (A4)-(A7). reduce to that for two functions S(w) and ~ ( w ) .  The 
general solution of the system, (A4HA7), for non-negative w with yl, y2 > 0 gives 
Z(u + io). It is instructive to start an investigation of the properties of such a solution from 
an analysis of the region of w, where the one-particle density of states is non-zero, as is the 
imaginary part of X. To determine the points 01 and 02 (and, as follows from (A4HA7), 
- w1 and - ~ 2 ,  respectively) at which the quasi-particle density of states vanishes, one has 
to consider the limit y1, yz -+ 0 in (A4XA7). A straightforward calculation shows that 
this leads to the following equation for the real parts SI and Sz: 

= O  
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Frequency w 

Figure Al. Real roots of S(o), The 
four branches correspond to all real mots 
of (A12) and (A13) for A* = 1.0 and 
p = -0.7. Full circles shows ‘critical‘ 
poinls where (dS/do) -+ 00. corresponding 
to the edges of h e  one-particle specwm. As 
clearly seen from the plot, S(w) as afunction 
of o has a pole for Ulese A2 and p. 

with SI and Sz being given by the corresponding solutions of the equations: 

sz - g f 6 J  = coth (*zsIslsz). 
The solution of three coupled equations, (A1 l)+Al3), thus give frequencies w at which the 
one-particle density of states vanishes, so they are nothing but the ‘band edges’. As can 
be easily shown, mathematically our condition for such w,  equation (All), is equivalent to 
that for w at which derivatives of two functions .’$(U) and Sz(w). as purely real solutions 
of (A12) and (A13), go to infinity: 

(2) --t 00. 

To illustrate this fact we plot in figure 7 all the real roots of (A12) and (A13) for A’ = 1 
and p = -0.7. The corresponding function S(o) has four branches with the following 
starting points shown in figure 7: 

S = p + & T 7  at o = m i c t l  

and 

s = p - -  at o=--ictl. 

Circles (also displayed in figure A l )  on each branch mark points at which our condition 
for n, yz --t 0, equation (All) ,  is satisfied, thus determining the edges of the one- 
particle spectrum. As clearly seen from figure AI, the quasi-particle ‘bands’ are placed 
between the derivative singularities of the real function S(w), where (dS/do) + CO, just 
as we mentioned above. For our example, shown in figure AI, we have two ‘Hubbard 
bands’, located below and above OJ = 0, i.e. in the intervals (-w, -01) and ( w ~ , w z ) ,  
correspondingly. Here, and in what follows, we will assume that w~ and 02 are solutions 
of (A14) (% P 01). In order to find the frequencies U, and wz for any given A and p we 
have to solve the corresponding equations, (A1 lt(A13). which can be done in the general 
case only numerically. 
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Let us discuss now what are the different regimes of our one-particle spectra for various 
A2 and p. A straightforward analysis of the condition in (A14) shows that we will have 
two subbands, i.e. wl 0 only if A(@) exceeds some critical value A&) given by the 
following system of equations: 

Here SO E Sl(o = 0) = Sz(w = 0) is the real root of (Al) at which the condition (A14) 
is satisfied. The corresponding numerical solution A’(@) is plotted in figure 1 (full curve). 
For the values A less than A&) the one-particle density of stales contains only one ‘band’, 
so that there is no gap in the single-particle excitation spectrum. For A larger than A&) 
the oneparticle density of states is split into two subbands, thus leading to a gap in the 
excitation spectrum. 

As revealed by a further analysis of (All)-(A13), in the strong-coupling regime 
(A2 >> p >> 1) the solution S(w) has a simple pole located away from quasi-particle 
bands, at a frequency given by the following equation: 

where the non-trivial solution (o # -p )  should be taken. As the pairing amplitude 
decreases, the pole approaches one of the subbands and crosses it  at some value A,(&) 
which can be obtained from the equations 

(t) A2 

SI 
2wl=- t s I -Co th  - 

A2 

SI 
w, - p = -_ 

Here wI and S1 are the ‘band edge’ and the value Sl(o1) at this point, respectively. The 
solution AI@) can be obtained from this system numerically and is plotted in figure 1 
(broken curve). Note that the parameters A2 = 0.05 and p = -0.7 for the example in 
figure A1 correspond to the region of A’@) above the critical curve A:(p)  in figure A l .  

As the region where complex (with non-zero imaginary part) solutions for CI and XZ lie 
is determined we can employ some numerical method to find them. We calculated our four 
functions, i.e. real (SI and S,) and imaginary (y1 and yz) parts of C ,  and C, by numerical 
solution of a corresponding system of differential equations on L11(0) and C&). That can 
be obtained from either (A4HA7). or (A12) and (A13). In the latter case, assuming that 
E1 and are complex, we have 
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After substitution of (A2) and (A3) into (A21) and (A22) we obtain a system of four 
differential equations. We solved these equations using the standard fourth-order Rungs  
Kutta method with the starting point WO lying in the middle of the interval (01.02). i.e. 

0 1  +% 
2 

0 0  = - 
where in the ‘one-band’ case we take 01 = 0. The initial values for S1(wm), Sz(w,,,), yl(o,,,) 
and yz(om) were obtained from the system (A4)-(A7) using a minimization procedure. In 
the case of p = 0, one can determine the ‘starting point’ of integration without such a 
minimization. Indeed, it can be shown from (A4HA7) (after the substitution (A9) and 
(AlO)), that then we can use as a starting point either WO = 0 for the one-band case, when 
the pairing amplitude is less than the critical value given by A2 = 1/3, or frequency 00 at 
which condition S(@) = 00 holds. In the former case we have for the starting point o0 

S(w0) = 0 

and y(*) is to be determined from the following equation: 

-- y -tan-’(:). 
A2 + y 2  

In the opposite limit, i.e. the two-band case, the starting point S(@) = m,, is determined 
from the equation 

2 A’ = O: + y 

where y = y(w0) is a solution of 

The properties of the complex solutions of our equations for X(w), (A4)-(A7), are discussed 
in section 4. 
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